Synthesising 30 Years of Mathematical Modelling of Echinococcus Transmission
نویسندگان
چکیده
BACKGROUND Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models. METHODOLOGY/PRINCIPAL FINDINGS A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1) the inclusion of a 'latent' class and/or time delay from host exposure to infectiousness; 2) an age structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic parameters; and 6) inclusion of spatial and risk structures. CONCLUSIONS/SIGNIFICANCE This review discusses the conditions under which these mechanisms may be important for inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting changes in the disease burden over time and to simulate control strategies that optimise public health impact.
منابع مشابه
Mathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies
An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...
متن کاملMathematical modeling of Echinococcus multilocularis transmission.
A mathematical model for the transmission cycle of Echinococcus multilocularis would be useful for estimating its prevalence, and the model simulation can be instrumental in designing various control strategies. This review focuses on the epidemiological factors in the E. multilocularis transmission cycle and the recent advances of mathematical models for E. multilocularis transmission.
متن کاملMathematical Model of Novel COVID-19 and Its Transmission Dynamics
In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...
متن کامل1 Transmission dynamics of Echinococcus multilocularis in a patchy environment
We illustrate some of the challenges and potential benefits of modelling parasite population dynamics in a spatially explicit manner, using the example of Echinococcus multilocularis in semi-arid areas of Kazakhstan. We show that by taking a parasite-focussed approach to modelling population dynamics, rather than the usual host-focussed approach, we gain new insights into the complex factors th...
متن کاملModelling the transmission dynamics of Echinococcus granulosus in sheep and cattle in Kazakhstan.
Cystic echinococcosis, caused by Echinococcus granulosus, is an emerging disease in many parts of the world and, in particular, in eastern Europe and the former Soviet Union. This paper examines the abundance and prevalence of infection of E. granulosus in cattle and sheep in Kazakhstan. Observed data are fitted to a mathematical model in order to determine if the parasite population is partly ...
متن کامل